ĐỀ THI OLYMPIC TOÁN QUỐC TẾ IMO 2015

IMO 2015
Ngày 10-07-2015
Thời gian bắt đầu: 9am
Thời gian làm bài: 4 tiếng

Bài 1. Cho $S$ là một tập hữu hạn các điểm trên mặt phẳng. Tập $S$ được gọi là "cân bằng" nếu với với hai điểm $A,B$ phân biệt bất kì thuộc $S$ thì luôn tồn tại điểm $C$ thuộc $S$ thoả mãn $AC=BC$. Tập $S$ được gọi là "không tâm" nếu với bất kì ba điểm phân biệt $A,B,C$ thuộc $S$ thì không có điểm $P$ nào thoả mãn $PA=PB=PC$.
a) Chứng minh rằng với mọi số nguyên $n \ge 3$, tồn tại một tập "cân bằng" với $n$ điểm.
b) Tìm tất cả số nguyên $n \ge 3$, sao cho tồn tại một tập "cân bằng" và "không tâm" cho $n$ điểm.

Bài 2. Tìm mọi số nguyên dương $(a,b,c)$ thoả mãn $ab-c,bc-a,ca-b$ đều là luỹ thừa của $2$.

Bài 3. Cho tam giác nhọn $ABC$, $AB>AC$ có đường tròn ngoại tiếp $\Gamma$, trực tâm $H$ và chân đường cao $F$ hạ từ $A$. $M$ là trung điểm $BC$. $Q$ là điểm trên $\Gamma$ thoả mãn $\angle HQA= 90^{\circ}$, và $K$ là điểm trên $\Gamma$ sao cho $\angle HKQ=90^{\circ}$. $A,B,C,K,Q$ là các điểm phân biệt, và chúng nằm trên $\Gamma$ theo đúng thứ tự đó. Chứng minh rằng đường tròn ngoai tiếp hai tam giác $KQH$ và $FKM$ tiếp xúc với nhau.

IMO 2015
Ngày 11-07-2015
Thời gian bắt đầu: 9am
Thời gian làm bài: 4 tiếng

Bài 3. Tam giác $ABC$ nội tiếp đường tròn $\Omega$ có tâm $O$. Một đường tròn $\Gamma$ với tâm $A$ cắt cạnh $BC$ tại $D$ và $E$ sao cho $B,D,E,C$ phân biệt và nằm trên đường thẳng $BC$ theo đúng thứ tự này. $F,G$ là giao điểm của $\Omega$ và $\Gamma$ sao cho $A,F,B,C,G$ nằm trên $\Omega$ theo đúng thứ tự này. $K$ là giao điểm thứ hai của đường tròn ngoại tiếp $\triangle BDF$ và cạnh $AB$. $L$ là giao điểm thứ hai của đường tròn ngoại tiếp $\triangle CGE$ và cạnh $CA$.

Giả sử đường thẳng $FK$ và $GL$ phân biệt và cắt nhau tại $X$. Chứng minh rằng $X$ nằm trên đường thẳng $AO$.

Bài 4. Kí hiệu $\mathbb{R}$ là tập các số thực. Xác định tất cả các hàm số $f: \mathbb{R} \to \mathbb{R}$ thoả mãn $$f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)$$ với mọi số thực $x,y$.

Bài 5. Cho dãy $a_1,a_2, \cdots $ các số nguyên thoả mãn điều kiện sau:

(i) $1 \le a_j \le 2015$ với mọi $j \ge 1$;
(ii) $k+a_k \ne l+a_l$ với mọi $1 \le k<l$.

Chứng minh rằng tồn tại hai số nguyên dương $b$ và $N$ thoả mãn $$\left | \sum_{j=m+1}^n(a_j-b) \right | \le 1007^2$$ với mọi số nguyên $m,n$ thoả mãn $n>m \ge N$.


Post a Comment