Điều kiện $\left\{\begin{matrix}
x\geq -1& & \\
y\geq -1 & & \\
xy\geq 0 & &
\end{matrix}\right.$
Hệ PT
$$\Leftrightarrow \left\{\begin{matrix}
x+y-\sqrt{xy}=3 & & & \\
x+y+2+2\sqrt{(x+1)(y+1)}=16 & & &
\end{matrix}\right.$$
$$\Leftrightarrow \left\{\begin{matrix}
x+y-\sqrt{xy}=3 & & & \\
x+y+2\sqrt{x+y+xy+1}=14 & & &
\end{matrix}\right.$$
Đặt $$\Leftrightarrow \left\{\begin{matrix}
x+y=a & & & \\
\sqrt{xy}=b & & &
\end{matrix}\right.$$
Phương trình trở thành
$$\Leftrightarrow \left\{\begin{matrix}
a-b=3 & & & \\
a+2\sqrt{a+b^2+1}=14\ & & &
\end{matrix}\right.$$
$$\Leftrightarrow \left\{\begin{matrix}
a=b+3 & & & \\
2\sqrt{b^2+b+4}=11-b\ & & &
\end{matrix}\right.$$
x+y-\sqrt{xy}=3 & & & \\
x+y+2+2\sqrt{(x+1)(y+1)}=16 & & &
\end{matrix}\right.$$
$$\Leftrightarrow \left\{\begin{matrix}
x+y-\sqrt{xy}=3 & & & \\
x+y+2\sqrt{x+y+xy+1}=14 & & &
\end{matrix}\right.$$
Đặt $$\Leftrightarrow \left\{\begin{matrix}
x+y=a & & & \\
\sqrt{xy}=b & & &
\end{matrix}\right.$$
Phương trình trở thành
$$\Leftrightarrow \left\{\begin{matrix}
a-b=3 & & & \\
a+2\sqrt{a+b^2+1}=14\ & & &
\end{matrix}\right.$$
$$\Leftrightarrow \left\{\begin{matrix}
a=b+3 & & & \\
2\sqrt{b^2+b+4}=11-b\ & & &
\end{matrix}\right.$$
$$\Leftrightarrow \left\{\begin{matrix}
a=b+3 & & & \\
3b^2+26b-105=0 & & & \\
b \leq 11 & & &
\end{matrix}\right.$$
$$\Leftrightarrow 3b^2+26b-105=0$$
$$\Leftrightarrow \begin{bmatrix}
b=3 (TM) & & \\
b=\frac{-35}{3}(KTM) & &
\end{bmatrix}$$
Với $b=3$ $\Rightarrow a=6$
Vậy $$\begin{bmatrix}
x=3 & & \\
y=3 & &
\end{bmatrix}$$
a=b+3 & & & \\
3b^2+26b-105=0 & & & \\
b \leq 11 & & &
\end{matrix}\right.$$
$$\Leftrightarrow 3b^2+26b-105=0$$
$$\Leftrightarrow \begin{bmatrix}
b=3 (TM) & & \\
b=\frac{-35}{3}(KTM) & &
\end{bmatrix}$$
Với $b=3$ $\Rightarrow a=6$
Vậy $$\begin{bmatrix}
x=3 & & \\
y=3 & &
\end{bmatrix}$$
Post a Comment